Posted in | News | Nanomaterials | Nanomagnetics

Electric-Field-Assisted Magnetic Data Writing on Hard Drive

The rapidly growing quantity of digital information is placing stringent demands on the storage capacity of magnetic media, such as hard drives. Increasing the number of magnetic bits stored in a given area can increase capacity but requires reducing bit size, which makes each bit more vulnerable to accidental overwriting.

To compensate, researchers are exploring ‘hard’ magnetic materials, which have bits that are difficult to switch and therefore long-lived. However, writing to these materials with magnetic fields alone requires very high field strengths that are difficult to produce in hard drives.

This conundrum has spurred the development of techniques in which magnetic write heads are assisted by other sources of power, such as heat, microwaves or an electric field. However, the first two involve adding considerable complexity to hard drives, and the third has been completed only under unrealistic conditions. Now, under realistic conditions, Tiejun Zhou, Zhimin Yuan, Bo Liu and co-workers at the A*STAR Data Storage Institute in Singapore have demonstrated practical electric-field-assisted magnetic data writing on a hard drive.

Click here to read the full article.

Tell Us What You Think

Do you have a review, update or anything you would like to add to this news story?

Leave your feedback
Your comment type
Submit

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.