LMIS-1 Paper by Vl Flauraud on Novel Nanophotonic Antennas for Bio Cell Imaging Features on Biophysical Magazine

LMIS-1 paper by Vl Flauraud on novel nanophotonic antennas for enhanced bio cell imaging has been featured as highlight on biophysical magazine.

© 2015 EPFL

Abstract: We present a novel blurring-free stencil lithography patterning technique for high-throughput fabrication of large-scale arrays of nanoaperture optical antennas. The approach relies on dry etching through nanostencils to achieve reproducible and uniform control of nanoantenna geometries at the nanoscale, over millimeter-sizes in a thin aluminum film. We demonstrate the fabrication of over 400 000 bowtie nanoaperture (BNA) antennas on biocompatible substrates, having gap sizes ranging from (80 ± 5) nm down to (20 ± 10) nm. To validate their applicability on live cell research, we used the antenna substrates as hotspots of localized illumination to excite fluorescently labeled lipids on living cell membranes. The high signal-to-background afforded by the BNA arrays allowed the recording of single fluorescent bursts corresponding to the passage of freely diffusing individual lipids through hotspot excitation regions as small as 20 nm. Statistical analysis of burst length and intensity together with simulations demonstrate that the measured signals arise from the ultraconfined excitation region of the antennas. Because these inexpensive antenna arrays are fully biocompatible and amenable to their integration in most fluorescence microscopes, we foresee a large number of applications including the investigation of the plasma membrane of living cells with nanoscale resolution at endogenous expression levels.

Tell Us What You Think

Do you have a review, update or anything you would like to add to this news story?

Leave your feedback
Your comment type
Submit

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.