Posted in | News

Nano-nauts to Explore the Universe

Engineers at the University of Glasgow are designing a new breed of planetary explorers: tiny, shape-shifting devices that can be carried on the wind like dust particles but are also smart enough to communicate, fly in formation and take scientific measurements.

Smart dust particles consist of a computer chip, about a millimetre in dimension, surrounded by a polymer sheath that can be made to wrinkle or smooth out by applying a small voltage. Roughening the surface of the polymer means the drag on the smart dust particle increases and it floats higher in the air; conversely, smoothing out the surface causes the particle to sink. Simulations show that by switching between rough and smooth modes, the smart dust particles can gradually hop towards a target, even in swirling winds.

Professor John Barker, who will be describing possible applications of smart dust at the RAS National Astronomy Meeting in Preston on 18th April said, “The concept of using smart dust swarms for planetary exploration has been talked about for some time, but this is the first time anyone has looked at how it could actually be achieved. Computer chips of the size and sophistication needed to make a smart dust particle now exist and we are looking through the range of polymers available to find one that matches our requirements for high deformation using minimal voltages.”

Smart dust particles would use wireless networking to communicate with each other and form swarms. Professor Barker explains, “We envisage that most of the particles can only talk to their nearest neighbours but a few can communicate at much longer distances. In our simulations we’ve shown that a swarm of 50 smart dust particles can organise themselves into a star formation, even in turbulent wind. The ability to fly in formation means that the smart dust could form a phased array. It would then be possible to process information between the distributed computer chips and collectively beam a signal back to an orbiting spacecraft.”

In order for the smart dust to be useful in planetary exploration, they would need to carry sensors. With current technology, chemical sensors tend to be rather large for the sand-grain sized particles that could be carried by the thin Martian atmosphere. However, the atmosphere of Venus is much denser and could carry smart sensors up to a few centimetres in size. Professor Barker said, “Scientific studies could theoretically be carried out on Venus using the technology we have now. However, miniaturisation is coming on rapidly. By 2020, we should have chips that have components which are just a few nanometres across, which means our smart particles would behave more like macro-molecules diffusing through an atmosphere rather than dust grains.”

The group at Glasgow thinks it will be some years before smart dust is ready to launched into space. Professor Barker said, “We are still at an early stage, working on simulations and components. We have a lot of obstacles to overcome before we are even ready to physically test our designs. However, the potential applications of smart dust for space exploration are very exciting. Our first close-up studies of extra-solar planets could come from a smart dust swarm delivered to another solar system by ion-drive.”

Tell Us What You Think

Do you have a review, update or anything you would like to add to this news story?

Leave your feedback
Your comment type
Submit

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.