Nanotubes, Magnets and Electrically Charged Particles Leading to Quicker DNA Sequencing

Research at Oak Ridge National Laboratory is exploring how a system of nanotubes, magnets and electrically charged particles could lead to a quicker, cheaper way to conduct DNA sequencing. The project headed by Predrag S. Krstic of ORNL’s Physics Division will use a nanoscale quadrupole Paul trap, a component of a mass spectrometer that captures ions in an electromagnetic field, to develop a high speed DNA sequencing device. Using the Paul trap to manipulate DNA between nanotube electrodes could result in a lower cost alternative to nanopore sequencing, which works by moving strands of DNA through a small hole in a membrane.

Most of the work is being conducted in collaboration with the Mark A. Reed Research Group of Yale University. The research is funded by $722,000 from the National Human Genome Research Institute, part of the National Institutes of Health. The program seeks to cut the cost of whole-genome sequencing from millions of dollars to $1,000 or less, making individual genome sequencing cost-feasible for routine medical care.

Tell Us What You Think

Do you have a review, update or anything you would like to add to this news story?

Leave your feedback
Your comment type
Submit

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.