Development and Fabrication of Low-Loss Ceramic Thin Film Devices for Radio and Microwave Frequency Applications

By means of thin film technology a reduction of size, cost, and power consumption of electronic circuits can be achieved. The required specifications are attained by proper design and combinations of innovative materials and manufacturing technologies. This thesis focuses on the development and fabrication of low-loss ceramic thin film devices for radio and microwave frequency applications. The materials, growth conditions, and physical properties of the films and device structures are discussed in detail. Moreover, special emphasis is placed on the integration of highly conductive low-loss electrode materials into parallel-plate structures.

The thin films were prepared by sequential magnetron sputtering from metallic and ceramic deposition targets. The devices under study include tunable ferro-electric barium strontium titanate and lead strontium titanate parallel-plate capacitors, and piezoelectric aluminum nitride thin film bulk acoustic wave resonators. Furthermore, tantalum pentoxide and tantalum nitride thin films were in-vestigated for capacitor and resistor applications. As electrode material we used Au, Cu, Mo, and Pt.

The use of highly conductive low-loss Cu electrodes was only possible after the development of a new layer transfer fabrication method for parallel-plate ceramic devices. This method, which was successfully used to fabricate tunable ferroelectric capacitors and AlN bulk acoustic wave resonators, allows for high-quality ceramic film growth on suitable substrate and seed layers and, most importantly, deposition of the bottom and top electrodes after high-temperature reactive sputtering of the ceramic material.

Optimization of the ceramic growth conditions and the integration of these func-tional materials into low-loss parallel-plate structures resulted in state-of-the-art device performance. Key achievements include, device quality factors of more than 100 up to GHz frequency in ferroelectric parallel-plate capacitors, the tai-loring of ferroelectric film properties using substrate bias during magnetron sputtering, and very efficient electro-acoustic coupling in Mo/AlN/Mo bulk acoustic wave resonators.

Publication title: Fabrication and characterization of ferro- and piezoelectric multilayer devices for high frequency applications
Author: Tommi Riekkinen
Publication type: Other
ISBN number: 978-951-38-7356-1

Tell Us What You Think

Do you have a review, update or anything you would like to add to this news story?

Leave your feedback
Your comment type
Submit

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.