Modumetal Receives U.S. DOE Contract to Demonstrate Nanolaminated Materials for Gen IV Nuclear Power Application

Seattle-based Modumetal announced today that it has received a Small Business Innovative Research contract from the Department of Energy (DOE) to demonstrate application of its nanolaminate and functional gradation technology to structures that would improve the longevity and safety of Gen IV nuclear power plants.

The objective of the DOE effort is to support the energy initiatives of President Obama by providing access to innovative new technologies that support energy independence and the reduction of greenhouse gas emissions. In particular, this effort is aligned to the goals of the Generation IV Nuclear Energy Systems Initiative and addresses the need for advanced materials that can meet the requirements for application in high temperature fast reactors.

“If the Gen IV nuclear program is to be a real part of America’s energy solution set for achieving energy independence and emissions targets, advanced materials, like those that are the subject of this contract, must be realized,” said Modumetal CEO and Principle Investigator in the DOE effort, Christina Lomasney. “The Modumetal team is honored to have the opportunity to engage with DOE to meet the Nuclear Energy Systems Initiative goal and to aid in realizing a robust and sustainable reserve of energy production solutions for our nation.”

This effort will demonstrate the use of Modumetal’s nanolaminate technology to produce metal and ceramic structures that have the temperature and neutron resistance of silicon carbide ceramics, coupled with the ductility of steel.

The ultimate goal of the technology application is to have broad use in high temperature and irradiative environments, with potential users extending beyond just nuclear and including the fusion (Tokamak) reactor program and NASA. This project is part of a broader program within Modumetal that is focused on the development of advanced alloys, structures and thermal barrier coatings for use in a variety of energy production and efficiency applications.

Tell Us What You Think

Do you have a review, update or anything you would like to add to this news story?

Leave your feedback
Your comment type
Submit

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.