Microfluidic Device Provides Fast and Selective Detection of Low Levels of Vascular Disease Biomarkers

The detection of endothelial progenitor cells (EPCs)-specific biomarkers for vascular diseases that exist at low concentrations in blood-is a time-consuming process that requires large blood-sample volumes from patients. To reduce patient discomfort and delay in vascular disease diagnosis, a team led by Yu Chen from the Institute of Microelectronics of A*STAR, Singapore, has developed a microfluidic device that rapidly detects low EPC levels in blood-cell samples.

The researchers adapted a gold microelectrode array (MEA), previously employed in cell attachment studies2, for their EPC detection device. A unique configuration of horse-shoe shaped microfabricated electrodes concentrates EPCs at the center of other, disk-shaped electrodes through a technique called negative dielectrophoresis. Measuring the impedance between the horse-shoe shaped and disk electrodes allows the device to spot EPCs and determine their concentration.

“The electrode design combines both impedance detection and negative dielectrophoresis functions-which is different from approaches proposed by other researchers,” says Chen.

Click here to read the full story.

Tell Us What You Think

Do you have a review, update or anything you would like to add to this news story?

Leave your feedback
Your comment type
Submit

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.