Computer Circuits with Surface Plasmon Technology Could Operate at Faster Speeds than Current Electronics

Light waves trapped on a metal's surface, called surface plasmons, travel farther than expected, up to 250 microns from the source.

While this distance is just one-hundredth of an inch, it is far enough to possibly be useful in ultra-fast electronic circuits. Scientists captured the surface plasmons’ travel on video.

The Impact

Future computer circuits could use this phenomenon as interconnects. Because a surface plasmon travels at near the speed of light, computer circuits with this technology could operate at much faster speeds than current electronics.

Summary

Everyone knows that light can pass through transparent materials, such as glass. Metals, on the other hand, reflect and block light very efficiently. However, specially designed, extremely small metal structures can trap light. Once trapped, the light becomes a confined wave known as a surface plasmon. The plasmons can propagate almost as fast as light through the air. Researchers at Pacific Northwest National Laboratory experimentally showcased the unique ability to study a surface plasmon. In their experiments, the team applied two laser pulses to a gold sample surface: the first is called the pump, while the second is called the probe. The pump is used to generate the surface plasmon and is followed by the probe on a time delay, which detects the surface plasmon. By continuously tuning the time delay between the pump and probe pulses, the team monitored the motion of the plasmon on the gold surface. They captured the confined waves propagating on video, helping to directly extract details such as wavelength and speed. They also determined that a propagating plasmon can be detected at least 250 microns away from the generation source, meaning it can travel far enough to be useful in electronic circuits. This finding opens up the option for ultra-fast computers, as well as devices in the biological, health, and energy arenas.

Tell Us What You Think

Do you have a review, update or anything you would like to add to this news story?

Leave your feedback
Your comment type
Submit

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.