Posted in | News

Glycolytic Enzymes may be Key to Energy Supply for Self Contained, Self Propelled Nanobots

The biological pathway that powers sperm to swim long distances could be harnessed to nanotech devices, releasing drugs or performing mechanical functions inside the body, according to a presentation at the American Society for Cell Biology’s 47th Annual meeting.

The work by researchers at Cornell’s Baker Institute of Animal Health may be the first demonstration of how multistep biological pathways can be assembled and function on a human-made device.

Mammalian sperm have to delivery energy to the long, thin, whip-like tails that power their swimming. Sperm meet the challenge, in part, by onsite power generation, modifying the enzymes of glycolysis so that they can attach themselves to a solid structure running the major length of the sperm tail. From that secure perch, glycolytic enzymes convert sugar into ATP, supplying energy all along the sperm’s bending and flexing tail.

Chinatsu Mukai, Alex Travis, and others at Cornell’s College of Veterinary Science looked at the early steps in the glycolysis pathway to see if they could move it from the thin “fibrous sheath” that covers the sperm tail to a solid inorganic substitute - a nickel-NTA (nitrilotriacetic acid) chip.

First, the researchers replaced the sperm-specific targeting domain of hexokinase, the first enzyme of glycolysis, with a tag that binds to a special gold surface. Even when tethered, the enzyme remained functional. Next they tagged the second enzyme in the pathway, glucose-6-phosphate isomerase. This too was active when tethered. With both attached to the same support, the enzymes acted in series with the product of the first reaction serving as substrate for the second.

These are only the first steps in reproducing the full glycolytic pathway on an inorganic support, say Mukai and Travis. Mukai and Travis suggest that their work serves as proof of principle that the organization of the glycolytic pathway in sperm might provide a natural engineering solution of how to produce ATP locally on nano devices.

Tell Us What You Think

Do you have a review, update or anything you would like to add to this news story?

Leave your feedback
Your comment type
Submit

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.