CNSE to Develop Nanotechnology-Enabled Sensors and Controls Designed to Reduce Power Plant Emissions

The College of Nanoscale Science and Engineering ("CNSE") of the University at Albany has been selected to receive a prestigious grant from the U.S. Department of Energy ("DOE") for pioneering research and education that will support the development of nanotechnology-enabled sensors and controls designed to sharply reduce emissions from fossil fuel-based power plants.

The $300,000 grant is awarded through the highly competitive University Coal Research Program - DOE's longest-running student-teacher research grant initiative - which is designed to advance new ideas to support near-zero emission power plants and train a new generation of scientists and engineers in the investigation of long-term solutions for clean and efficient use of the nation's abundant coal resources.

Assistant Professor of Nanoengineering Dr. Michael Carpenter will lead the program at the UAlbany NanoCollege, which is aimed at addressing the critical need to develop innovative controls and sensors that are compatible with the harsh environmental conditions found in leading-edge power plants. Dr. Carpenter and his team of graduate students will conduct research on the use of a plasmonics-based, all-optical sensing technique that utilizes tailored nanomaterials as a sensing layer, offering a novel approach to reducing emissions to near-zero levels amid extreme temperature and humidity - and one that is both simpler and less expensive than current sensor designs.

Dr. Alain E. Kaloyeros, Senior Vice President and Chief Executive Officer of CNSE, said, "I congratulate Professor Carpenter on the receipt of this prestigious grant from the U.S. Department of Energy, which will enable innovative nanoscale research that further enhances the UAlbany NanoCollege's growing portfolio in the area of clean energy. Just as importantly, this project will provide pioneering educational opportunities for our students, who will comprise the future workforce that is vital to ensuring the presence of a safe and efficient energy supply to meet our nation's growing needs."

Dr. Carpenter said, "I am delighted to receive this grant from the U.S. Department of Energy, particularly as it provides unique opportunities for both CNSE and our graduate students. I look forward to working closely with students to engage in cutting-edge research and education that will ultimately improve the efficiency of advanced fossil energy systems, which is a great demonstration of the important and practical applications of engineering at the nanoscale."

Dr. Pradeep Haldar, Professor and Head of CNSE's Nanoengineering Constellation, said, "This grant provides further support and recognition for the world-class research capabilities at CNSE that are enabled by nanoengineering, including a growing concentration in the area of clean and alternative energy technologies. I congratulate Professor Carpenter on being chosen to receive this esteemed grant, and look forward to seeing the impact of this work in the areas of research and education."

CNSE was one of just six universities selected nationwide to receive grants under DOE's University Coal Research Program, which has funded more than 700 projects involving nearly 1,800 students since its inception in 1979.

Tell Us What You Think

Do you have a review, update or anything you would like to add to this news story?

Leave your feedback
Your comment type
Submit

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.